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Abstract

We present a 3D finite volume generalization of the 1-dimensional Lax–Friedrichs and Nessyahu–Tadmor
schemes for hyperbolic equations on Cartesian grids. The non-oscillatory central difference scheme of Nessyahu
and Tadmor, in which the resolution of the Riemann problem at the cell interfaces is by-passed thanks to the use
of the staggered Lax–Friedrichs scheme, is extended here to a two-step, 3-dimensional non-oscillatory centered
scheme in finite volume formulation.

Piecewise linear cell interpolants using several van Leer-type limiting techniques to estimate the gradient (van
Leer, van Albada, SuperBee, MinMod) lead to a non-oscillatory spatial resolution of order superior to 1. The fact
that the expected second-order resolution is not fully attained in 3D is investigated first by considering an alternate
dual grid (in 2D), and by using the original van Albada limiter in 3D.

Numerical results for a linear advection problem with continuous and discontinuous initial conditions in 2D and
3D show the accuracy and stability of the method. A comparison is made between the 2D Arminjon–Stanescu–
Viallon and Jiang–Tadmor formulations and the new one. A new simple projection method is used for the gradients
in the new 2D scheme. We also include results for the 3D Euler system (channel with a forward facing step). 2001
Published by Elsevier Science B.V. on behalf of IMACS.

0. Introduction

The non-oscillatory central difference scheme of Nessyahu and Tadmor may be interpreted as a
Godunov-type scheme for one-dimensional hyperbolic conservation laws in which the resolution of the
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Riemann problems at the cell interfaces is by-passed thanks to the use of the staggered Lax–Friedrichs
scheme. Piecewise linear MUSCL-type cell interpolants and slope limiters lead to an oscillation-free
second-order resolution.

In earlier papers [7–9] we presented a 2-dimensional finite volume method generalizing the
one-dimensional Lax–Friedrichs [23] and Nessyahu–Tadmor [25] difference schemes for hyperbolic
conservation laws to unstructured triangular grids, while in [2,5] we constructed a corresponding
extension in the case of 2-dimensional Cartesian grids. These “central” finite volume methods share
with the Lax–Friedrichs and Nessyahu–Tadmor schemes the two advantages of avoiding the resolution
of Riemann problems at the cell interfaces, and being non-oscillatory.

In [18], Jiang and Tadmor have presented a slightly different extension to two-dimensional Cartesian
grids; the difference between both extensions for rectangular grids is that in [5], the MUSCL
(Monotonic Upstream-centered Scheme for Conservation Laws) variable extrapolation (“reconstruction
technique”) [32,33] is applied both to the vector of conservative variables and to the fluxes, while in [18],
it is only used for the conservative variables. All these extensions to 2-dimensional problems lead to
non-oscillatory, essentially second-order accurate finite volume methods.

In this paper, we first present a finite volume extension of the first-order accurate Lax–Friedrichs
scheme to three-dimensional Cartesian grids, and show that the new scheme is monotone under an
appropriate CFL condition. We then construct the corresponding extension of the Nessyahu–Tadmor
difference scheme to a non-oscillatory finite volume method for 3-dimensional staggered Cartesian grids,
which should in principle be second-order accurate.

As our first numerical experiments indicated orders between 0.8 and 1.3, we investigated two avenues
to try and recover quasi-second-order accuracy. First in three dimensions, if we apply the simplified
form of the van Albada limiter in the computation of the predictor, and any reasonable limiter for the
gradient of the piecewise linear reconstruction at timetn, we obtain accuracy orders between 0.7 and 1.86
depending on the choice of the limiter for the reconstruction step. Alternately, if we apply, as suggested
by Venkatakrishnan [34], theoriginal van Albada limiter [29], both to the reconstruction at timetn and
to the predictor attn+1/2, we obtain second-order resolution, in theL1 norm, for an appropriate choice of
the parameterK (see [34] and Section 1.7). Unfortunately, we then lose strict monotonicity preservation,
and get small oscillations in computationally sensitive regions, e.g., near the supersonic inlet, as was
the case in [34]. This is caused by the fact that the scheme leaves the reconstruction gradients unlimited
or almost unlimited in the near-constant regions, as observed by Venkatakrishnan [30]. Choosing the
smallest value ofK compatible with second-order accuracy allows the limiter to remain active nearly
everywhere except in regions where the solution is truly constant, and thus leads to nearly perfectly
monotonous profiles where needed.

Our second field of investigation, as regards the recovery of second-order accuracyand preservation
of monotonicity was related with our earlier construction [5], for 2-dimensional Cartesian grids, of a
finite volume generalization of the Lax–Friedrichs (LF) and Nessyahu–Tadmor (NT) schemes. This
generalization, for Cartesian grids, is not the direct transposition to rectangular grids of our earlier
generalization of the LF and NT schemes to unstructured triangular grids [7,9]; indeed it features cells,
both for the original and dual grid, with sides parallel to thex, y axes (Fig. 1(a)), while for the direct
analogous to our triangular scheme, the alternate quadrilateral cellsLlm of the dual grid should in fact be
oblique, with sides making 45 degree angles with the sides of the original cellCij (see Fig. 1(b) showing
the dual cellLij ).
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Fig. 1. 2D dual cells. (a) Original (non-oblique) case. (b) Oblique case.

This approach has been presented in [2,3], and has also been considered, independently, by Katsaou-
nis and Levy [19]; one of the tests presented in [19] is the same as our first numerical test here, inspired
from [18], and results are comparable since both schemes are very similar. With this new “oblique” ver-
sion of our 2-dimensional finite volume extensions of the Lax–Friedrichs and Nessyahu–Tadmor schemes
to staggered Cartesian grids, we obtain second-order accuracy and monotonicity preservation, provided
that we use standard limiters, without having to apply the original or modified van Albada limiter.

In a forthcoming paper, we might extend this new “oblique dual grid” approach to the corresponding 3-
dimensional finite volume method with oblique dual cells, and show that we again obtain, in the case of
a linear advection problem with continuous initial function, second-order accuracy and monotonicity
preservation without having to resort to special limiters such as the original van Albada limiter,
and simply applying the 3-dimensional analog of the standard limiters successfully used with both
2-dimensional Cartesian versions (non-oblique dual rectangular cells [5], oblique dual cells as described
in Section 2 of this paper) of the 2-dimensional finite volume method for Cartesian grids.

Regarding the actual accuracy one should expect to obtain, let us observe here that in the case
of a nonlinear hyperbolic equation with a (discontinuous) initial functionu0 ∈ L∞(Rd) ∩ BVloc(R

d),
Küther [21,22] has recently proved an error estimate of order 0.25 for the Lax–Friedrichs-type finite
volume scheme on unstructured grids, which is not optimal; it was indeed recently proved by Sabac [26]
thath1/2 is optimal for first-order schemes. For second-order schemes, it is presently believed/conjectured
thath1 is optimal. Küther’s proof of theh1/4-error estimate is inspired from the work of Haasdonk, Kröner
and Rohle [14].

Instead of modifying the staggered/dual cells, another possible approach consisting of modifying the
numerical flux by using an improved quadrature formula for the fluxes across the boundaries of the cells
has recently been proposed by Lie and Noelle [24]. Their scheme is less sensitive to grid orientation
effects and leads to an improved preservation of symmetries as compared with the original scheme
considered here and in [2,5,18].

We have recently proposed a new version of our method for 1- and 2-dimensional Cartesian grids
and 3-dimensional unstructured tetrahedral grids, where a new approach to compute the flux allows us
to bypass the predictor step used in all of the above schemes, thus substantially reducing computing
times [6].
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The organization of this paper is as follows. In Section 1, we describe our 3-dimensional central fi-
nite volume methods of first- and second-order accuracy, which generalize the LF and NT schemes,
respectively. The dual cells used here have sides parallel to the coordinate axes, as in [5]. The first-order
accurate Lax–Friedrichs-type finite volume method is shown to bemonotoneunder an appropriate CFL
condition. We also describe the limiters used in this paper. In Section 2, we construct the direct analogue,
for 2-dimensional Cartesian grids, of our finite volume generalization of the NT scheme for unstructured
triangular grids. This 2-dimensional finite volume method has oblique dual cells. In Section 3, we present
numerical experiments for the 3-dimensional method of Section 1 and for the 2-dimensional oblique dual
cell method of Section 2, with, in the latter case, a comparison with our earlier 2-dimensional finite vol-
ume method with dual cell boundaries parallel to the axes, and with the Jiang–Tadmor variant of that
method.

1. Three-dimensional finite volume extensions of the Lax–Friedrichs and Nessyahu–Tadmor
schemes

In this section we briefly describe how to construct a 3D finite volume generalization of the Nessyahu–
Tadmor (1D) scheme on Cartesian grids. A 2D extension (ASV1) on quadrilaterals, featuring non-oblique
dual cells, was first proposed in 1995 by Arminjon et al. [5]. The ASV finite volume method differs from
the Nessyahu–Tadmor scheme because not only the dependent variable vectorU but also the fluxes
are reconstructed using a MUSCL technique. Four items are needed to obtain the ASV formulation (on
structured uniform hexahedrals), for each time step.

• A centered monotone scheme (which implies that this scheme is only first-order).
• A reconstruction of the solution with the MUSCL method to obtain second-order spatial accuracy.
• A predictor for the fluxes, for second-order time accuracy.
• A precise CFL condition to prevent wave interaction between the original and dual grids.
The first item is defined with the help of a staggered Lax–Friedrichs-type (LF) finite volume scheme.

This scheme uses a uniform fully structured hexahedral grid for the dual grid. We also need to prove that
this LF-type scheme is monotone. The reconstruction is then performed here both for the point values
U ijk and for the fluxes (see [5]). A predictor (in time) is then constructed by using a Taylor expansion
combined with the conservation law (1). Finally, the CFL condition is computed using analytic and
geometric arguments inspired by Hindmarsh et al. [9,15].

1.1. Generic model equation

We consider the 3-dimensional system of conservation laws

U t + ∇ · F (U)= U t + f x + gy + hz = 0, (1)

where

U = (
u1, u2, . . . , um

)T
,

F = (f ,g,h) = ((
f 1, f 2, . . . , f m

)T
,
(
g1, g2, . . . , gm

)T
,
(
h1, h2, . . . , hm

)T)
with the initial conditionU(x, y, z,0) = U0(x, y, z). System (1) will be assumed to be hyperbolic in the
sense of the following definition.

1 Arminjon–Stanescu–Viallon.
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Definition 1.1. The system (1) is said to be hyperbolic if any linear combination of them×m Jacobian
matricesA(U), B(U), C(U) where

A = (
A(U),B(U),C(U)

)=
(
∂f

∂U
,
∂g

∂U
,
∂h

∂U

)
(2)

hasm real eigenvaluesλk(U) andm linearly independent right and left eigenvectorsrk(U) and lk(U)

that satisfy

r i · lj = δij .

1.1.1. Notations
As the staggered Lax–Friedrichs and Nessyahu–Tadmor schemes are one-dimensional two-step

schemes using two staggered grids at alternate time steps, our three-dimensional finite volume extensions
also use two staggered grids and two time steps.

For the first grid, the control volume or cell is the regionCijk = [xi−1/2, xi+1/2] × [yj−1/2, yj+1/2] ×
[zk−1/2, zk+1/2], while for the second grid the dual cell will be defined asLijk = [xi, xi+1] × [yj , yj+1] ×
[zk, zk+1].

1.2. First time step, LF-type scheme

In the first (and further odd) time step of our 3-dimensional finite volume schemes, we start from
initial (or previously obtained) cell average valuesUCijk for the cells of the first grid, and compute cell
average valuesULijk for the (staggered) dual cells of the second grid. This is done by integrating (1) on
an extended control volumeLijk × [tn, tn+1], whereLijk is a cell of the dual grid, and by assuming that
ULijk (t

n + �t) is piecewise constant on the cells of the second grid. The following equality is easily
verified with the help of Fig. 2, showing dual cellLijk and one of its composing subcellsLijk ∩ Clmn in
the particular casel = i, m = j, n= k (dotted region).

Lijk = ⋃
lmn

neighbor

Lijk ∩Clmn, (3)

where “lmnneighbor” meansl = i, i + 1;m = j, j + 1; n= k, k+ 1 and in the sequel,
∑

lmn( ) stands for∑
lmn neighbor( ).
Using (1) and applying the divergence theorem to the flux term, we obtain

tn+1∫
tn

∫
Lijk

U t dV dt +
tn+1∫
tn

∫
∂Lijk

F · ndAdt = 0 (4)

or ∫
Lijk

U
(
x, y, z, tn+1)dV −

∫
Lijk

U
(
x, y, z, tn

)
dV = −

tn+1∫
tn

∫
∂Lijk

F
(
U(x, y, z, t)

) · ndAdt. (5)

For afirst-order accurate Lax–Friedrichs-type method, the right-hand side is evaluated (according to
the left rectangular quadrature formula) at timetn, using (3) and cell-average values:
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V (Lijk)ULijk

(
tn+1)−∑

lmn

V (Clmn ∩Lijk)U lmn
(
tn
)= −�t

∫
∂Lijk

F
(
Un
) · ndA. (6)

The functionV ( ) calculates the volume of the region common to the cellLijk (second grid) and cellClmn

(first grid). Let us mention that the cells of either grid do not need to be cubic, in fact, they can be any
rectangular prism in 3-space.

For asecond-order accurate methodgeneralizing the NT scheme, the right-hand side of (5) is evaluated
with the midpoint formula for integration with respect to time

−
tn+1∫
tn

∫
∂Lijk

F
(
U(x, y, z, t)

) · ndAdt ∼= −�t

∫
∂Lijk

F
(
Un+1/2) · ndA, (7)

whereUn+1/2 is some predicted value obtained with the help of (1). The corresponding calculations will
be described in Section 1.6.

1.3. Second time step, LF-type scheme

Once the first time step is completed, starting from the obtained dual cell valuesULijk , we compute cell
average valuesUCijk for the original cellsCijk of the first grid; the calculations are performed in a similar
manner (see [5,7,9] for details in the 2-dimensional case).

1.4. Fluxes

The computation of the flux for the scheme (right-hand side of (6)) is more complex than that of the
conservative variables. Here, again, we assume that the fluxes are piecewise constant on∂Lijk and∂Clmn,
respectively.

We begin by labeling each of the faces of∂Lijk and the corresponding normal vectors (Fig. 2):

∂Lijk = ∂L1
ijk ∪ ∂L2

ijk ∪ ∂L3
ijk ∪ ∂L4

ijk ∪ ∂L5
ijk ∪ ∂L6

ijk,

n1 = −nx, n2 = −ny, n3 = −nz, (8)

n4 = n1, n5 = n2, n6 = n3, (9)

nx = (1,0,0), ny = (0,1,0), nz = (0,0,1). (10)

Again, one can derive an expression similar to (3) for the faces. Each one of the faces can be written
as the union of 4 subfaces resulting from the intersection with theClmn of the first grid:

∂L
q
ijk = ⋃

lmn
neighbor

Clmn ∩ ∂L
q
ijk,

where the notationneighbornow means that only four of the eight index combinations corresponding to
the notation

⋃
lmn neighborgive rise to a non-empty intersection set. IfA( ) is a function that calculates the

area of a given surface, the first step of the staggered LF scheme can be written in the following compact
form:



P. Arminjon et al. / Applied Numerical Mathematics 40 (2002) 367–390 373

Fig. 2. Intersection of cellLijk and cellCl=i,m=j, n=k (dotted region).

ULijk

(
tn +�t

) = 1

V (Lijk)

( ∑
lmn

neighbor

V (Clmn ∩Lijk)U lmn
(
tn
)−�t

6∑
q=1

∑
lmn

neighbor

A
(
Clmn ∩ ∂L

q
ijk

)
F lmn · nq

)
,

(11)

whereF lmn = F (U lmn(t
n)) andU lmn(t

n) = UClmn(t
n) for lmn neighbor.

1.5. Monotonicity condition

Let us recall here some basic definitions to make the article self-contained.

Definition 1.2. A general scheme for the model Eq. (1) can be written

Un+1
Lijk

=H(UCi−p,j−q,k−r
, . . . ,UCi+p′, j+q′ , k+r′ ). (12)

Our finite volume scheme is a subcase of the form

Un+1
Lijk

=H(UCi,j, k
, . . . ,UCi+1, j+1, k+1) = H

{
U lmn

(
tn
)
, (lmnneighbor)

}
. (13)

Definition 1.3. The scheme (13) is monotone ifH is a monotone increasing function of each of its
arguments

0 � ∂H
∂U lmn

(lmnneighbor)

or equivalently if all eigenvalues of the matrix∂H/∂U lmn (lmnneighbor) are non-negative.

Theorem 1.1. Under the CFL-like condition(22) below, the3-dimensional finite volume extension(11)
of the LF scheme for structured uniform staggered grids is monotone.
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Proof. From (11) we find

∂H
∂U lmn

= V (Clmn ∩Lijk)

V (Lijk)
I −�t

6∑
q=1

A(Clmn ∩ ∂L
q
ijk)

V (Lijk)
Almn · nq (14)

for lmnneighbor. To simplify the calculations, we introduce the following vector:

K =
6∑

q=1

A(Clmn ∩ ∂L
q
ijk)

V (Lijk)
nq = (Kx,Ky,Kz). (15)

We then have
6∑

q=1

A(Clmn ∩ ∂L
q
ijk)

V (Lijk)
Almn · nq = Almn ·∑

q

A(Clmn ∩ ∂L
q
ijk)

V (Lijk)
nq = Almn · K ≡ M. (16)

Here,M= M(l,m,n) represents a weighted sum of the 3 Jacobian matricesA,B,C. By our assumption
on the hyperbolicity of system (1), the matrixM has real eigenvaluesλs (1 � s � m) and can be
diagonalized by a similarity transformation (see also [16, Vol. II, pp. 176–191] for the Euler equations).
By Definition 1.3, monotonicity of our finite volume extension of the Lax–Friedrichs scheme will be
established if we can prove, in view of (14)–(16), that

W ≡ V (Clmn ∩Lijk)

V (Lijk)
I −�tM (17)

is positive semi-definite. By the spectral theorem, the eigenvalues ofW are the numbers

V (Clmn ∩Lijk)

V (Lijk)
−�tλs(M), (18)

whereλs(M) is an eigenvalue ofM. We therefore need

�tλs(M) � V (Clmn ∩Lijk)

V (Lijk)
, s = 1, . . . ,m, lmnneighbor, (19)

or, finally,

�t max
1�s�m

{∣∣λs(M)
∣∣}� V (Clmn ∩Lijk)

V (Lijk)
. ✷ (20)

Remark 1.1. It might appear at first sight that (20) does not have the dimensional form of a CFL
condition; but the matrixM is equal to the matrix productAlmn · K whereK is obviously O(h−1)

by (15), whereh is the mesh size in thex, y, z directions, for the case of a uniform rectangular grid. The
eigenvaluesλs(M) are thus O(h−1) and (20) does have the dimensions of a CFL condition.

Remark 1.2. For a perfectly uniform hexahedral grid the factorV (Clmn ∩ Lijk)/V (Lijk) reduces to1
8,

and the vectorK takes the simpler formK = 1/(4h)
∑6

q=1 δ(Clmn ∩ Lijk)nq , so that the monotonicity
condition (20) is not very restrictive (hereδ(·) represents a “Kronecker-like” set function which is equal
to zero when the argument is the empty set, otherwise its value is 1); indeed, we then obtain the condition

�t

h
max

s

{∣∣λs(U lmn)
∣∣}� 1

2
. (21)
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However this is only the monotonicity condition for a usual (non staggered) grid, the parameterh in (21)
must be divided by two for obvious geometric reasons (since we are using staggered grids). The final
monotonicity condition for the finite volume Lax–Friedrichs scheme can thus be written as

�t

h
max

s

{∣∣λs(U lmn)
∣∣}� 1

4
. (22)

Remark 1.3. In the scalar case, we can therefore expect the numerical solutionuh to converge to the
unique solution of (1) satisfying the entropy condition, ash → 0, if it does converge, see [10,12,20]. In
the 2-dimensional case of unstructured triangular grids, we have proved [8], for a scalar linear hyperbolic
equation, that the numerical solution satisfies a discrete maximum principle, and converges weakly$ to
a weak solution of (1). The proof can be directly extended to the case of 2-dimensional Cartesian grids,
again for a scalar linear hyperbolic equation.

1.6. A second-order finite volume method via MUSCL cellwise interpolation

In the one-dimensional Nessyahu–Tadmor difference scheme, the first-order accuracy of the Lax–
Friedrichs scheme was raised to second-order by the use of van Leer’s MUSCL [32,33] cellwise
piecewise linear interpolation of the conservative variables (but not of the flux functions), and a midpoint
rule approach for the time discretization of the flux integral, implemented with a predictor–corrector
treatment of each time step. In the 3-dimensional finite volume generalization, we apply the same
strategy to both the conservative variablesand the flux functionsf ,g,h, following our 2-dimensional
generalization of the NT scheme to Cartesian grids [5]. LetMU

Clmn
(respectively,Mf

Clmn
, Mg

Clmn
, Mh

Clmn
)

denote the piecewise trilinear interpolant of the conservative variableU (respectively, of the flux
functionsf , g, h) on cellClmn:

MU
Clmn

(R) = UClmn + ∇UClmn · (R − RClmn), (23)

where∇UClmn is some limited approximate gradient of the interpolant, to be defined later (Section 1.7)
(with similar definitions forMf

Clmn
, etc.).R is the position vector of an arbitrary point contained inClmn,

andRClmn denotes the centroid of the same cell.
Replacing in (5) all the cellwise constant variables by their linear reconstruction (23), integrating in

time with the help of the midpoint rule for the flux integral, we obtain

V (Lijk)U
n+1
Lijk

=
∫
Lijk

MU
Lijk

dV −�t

∫
∂Lijk

(
M

f n+1/2

Lijk
nx +M

gn+1/2

Lijk
ny +Mhn+1/2

Lijk
nz
)

dA, (24)

whereMU
Lijk

andMf n+1/2

Lijk
are the piecewise linear interpolants ofU andf n+1/2 = f (U(tn+1/2)), respec-

tively, in cellLijk ; U(tn+1/2) is a predicted value defined below.
We now use the definitions of the control volumesCijk andLijk and introduce the following notations:

�xi = xi+1/2 − xi−1/2, �yj = yj+1/2 − yj−1/2, �zk = zk+1/2 − zk−1/2,

Vijk = �xi�yj�zk, Aij = �xi�yj .

For a uniform and isotropic grid,�xi = �yj = �zk ≡ h.
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For simplicity, from now on,U ijk will meanUCijk , i.e., the value ofU at the centroid of the cell of the
first grid. Decomposing the limited gradient into its Cartesian parts gives:

∇V ijk = (
V lim

ijk,x ,V
lim
ijk,y,V

lim
ijk,z

)
, (25)

where for any vector functionV , V lim denotes the limited vectorV . Our complete ASV-type (non-
oblique Cartesian) 3D finite volume generalization of the NT scheme can now be derived and is given in
Appendix A. The intermediate-time fluxes are found with the help of a predictor step:

U
n+1/2
ijk = Un

ijk + �t

2
U ijk,t

(
tn
)
. (26)

Using the conservation equation (1), (26) can be written in a form which is easy to evaluate, replacing
the gradients by their limited numerical approximations:

U
n+1/2
ijk = Un

ijk − �t

2

(
f lim

ijk,x + glim
ijk,y,+hlim

ijk,z

)
, (27)

wheref lim
ijk,x denotes the limited derivative off in the x̂ direction.

Here, an alternate choice for the predictor can be made, using the known Jacobian matrices of the flux
function:

U
n+1/2
ijk = Un

ijk − �t

2

(
A · U lim, n

ijk,x +B · U lim, n
ijk,y +C · U lim, n

ijk,z

)
. (28)

From a computational viewpoint, some inconveniences arise from the fact that (28) is very costly to
evaluate even for the non-conservative Jacobians (which have a simpler form).

For each of these two predictors, two approaches to define the predicted values of the dependent
variables at timetn+1 can be used. By a proper transformation (see [12,16]), one can pass from the
conservative to the physical variables (when dealing with the Euler equations), make the prediction at
tn+1/2 and then use it to reconstruct the fluxes attn+1/2, to finally obtainUn+1. The other approach is
to use the predictor on the conservative variables, and then rebuild the fluxes with the intermediate-time
approximations.

1.7. Limiters

To give a short description of the MUSCL cell interpolation considered here with the various limiters
mentioned earlier in this section and used in our numerical experiments, we follow the notation used
in [27,34], and considerin the1-dimensional case for simplicitypiecewise linear reconstructions defined,
at the cell interfacexi+1/2, by

uLi+1/2 = ui + 1
2ψ(θi)(ui − ui−1), (29)

uRi−1/2 = ui − 1
2ψ

(
1

θi

)
(ui+1 − ui), (30)

where

θi = �+ui
�−ui

≡ ui+1 − ui

ui − ui−1
(31)
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andψ(θ) is the (slope) limiter function; we takeψ(r) ≡ 0 for r � 0. In this paper, we have used the
following limiters.

(i) Simplified van Albada2 (SVA). Let

ψVA(θ) = θ2 + θ

θ2 + 1
. (32)

With this limiter, (29) takes the form

uLi+1/2 = ui + 1

2

θ2 + θ

θ2 + 1
(ui − ui−1) (33)

with θi = �+ui/�−ui ≡ �+/�−, for simplicity.
We note here that if we use a cell interface value defined from a centered approximation of the
slope

uLi+1/2 = ui + 1

2
R(θi)

ui+1 − ui−1

2
(34)

van Albada’s simplified limiter must now be written in the form

R(θi)= 2θi
1+ θ2

i

. (35)

It can be easily verified that both (33) and (34) can be written as

uLi+1/2 = ui + 1

2

�2+�− +�2−�+
�2+ +�2−

. (36)

(ii) Original van Albada3 (OVA). This choice corresponds to modifying Eq. (36) as follows:

uLi+1/2 = ui + 1

2

(�2+ + ε2)�− + (�2− + ε2)�+
�2+ +�2− + 2ε2

, (37)

whereε2 is made proportional to(�x)3, by settingε2 = (K�x)3 whereK is a constant. Notice
that at an extremum ofu or in a region whereu is nearly constant,ε2 = O(h3) will dominate
�2+, �2− by Taylor’s theorem, leading to a nearly unlimited valueuLi+1/2 (i.e., ψ ≈ 1) in (29),
while if K is very large the same situation will prevail. It has been verified by Venkatakrishnan
that for a fixed value ofK , the scheme will tend to be second-order accurate, but will not be
monotonicity preserving for an advection problem. This difficulty arises from the fact that the
scheme resumes to the unlimited form (34) withR(θ) = 1 in the near-constant regions (see [34]
for details). By restricting the action of theoriginal van Albada limiter (37) to the neighborhood
of true extrema only, while using the simplified form (32)–(36) elsewhere, Venkatakrishnan
obtained a globally second-order accurate scheme (for all usual norms) which is monotonicity
preserving (the limiter is then the original van Albada limiter at a true extremum, but the
simplified van Albada in near-constant regions). In this paper, for simplicity, we chose the

2 SVA: Simplified van Albada limiter. (We should mention here that in [34], the original and simplified van Albada limiters
have been exchanged. Van Albada’s original limiter really is defined by (37), as communicated to the first author by B. van
Leer.)

3 OVA: Original van Albada without Threshold.
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following limiting strategy: Definingumax
i = max(ui−1, ui, ui+1) and reconstructions of the form

ui(x) = ui +ψ(θi)(ui −ui−1)/�x(x−xi) we use the original van Albada limiter (37) everywhere
except when both̃�+ = nmax

i −ui and�̃= ui(xi+1/2)−ui are below a certain tolerance threshold,
in which case we take the limiter equal to 1 (no limitation).This variant of the original van Albada
limiter will be noted OVAT (Original van Albada with Threshold).

(iii) van Leer(VL). In van Leer’s notation we consider piecewise linear interpolants

ũ(x) = ui + δi
(x − xi)

�x
, xi−1/2 � x � xi+1/2, (38)

with θi as in (31) and

δi = R(θi)δ̂i and δ̂i ≡ ui+1 − ui−1

2
(39)

the coefficientR(θi) is a “slope limiter” related to Sweby’s [28] flux limiterφ(r) by [12]

φVL(r) = R(θ)(1+ θ)

2θ
with ri = �−ui

�+ui
= 1

θi
. (40)

We then have [12,13] the corresponding forms of van Leer’s limiters

R(θ)= 4θ

(1+ θ)2
, θ � 0, (41)

and

φVL(r) =


2r

1+ r
, r � 0,

0, r < 0.
(42)

(iv) MinMod (MM). In Sweby’s notation, the minmod limiter is defined by

φMM(r) =
{

min(r,1), r � 0,

0, r < 0
(43)

in the slope limiter notation

MM(�+,�−)= 1
2

{
sgn(�+)+ sgn(�−)

}
min

{|�−|, |�+|}. (44)

(v) SuperBee(SB). In this case

φSB(r) = max
{
0,min(2r,1),min(r,2)

}
. (45)

2. Two-dimensional Cartesian grid scheme with oblique dual cells ASCV 4

Notations

We consider Eq. (1) with a flux functionF (U) = (f (U),g(U)) in some rectangular regionΩ of the
x-y plane, with initial condition

U(x, y, t = 0) = U0(x, y), (x, y) ∈Ω. (46)

4 Arminjon, St-Cyr, Viallon.
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Fig. 3. CellCi and cellLij .

We shall describe the scheme in the case of a uniform rectangular grid which partitionsΩ intoM2 squares
of equal area; the extension to arbitrary rectangular grids is straightforward, except for the initialization,
which requires numerical integration, and the programming part of the resolution, where we have to
proceed as in the case of a fully unstructured grid. Ifh = �x =�y = xi+1/2 −xi−1/2 = yj+1/2 −yj−1/2 is
the mesh size, the nodes of the first grid are the points(xi, yj ) = (ih, jh) for 0� i, j � M . We introduce
a numbering of these nodes, noted

ai, 1� i � (M + 1)(M + 1), (47)

and consider, for an arbitrary nodeai , the finite volume cellCi defined, for the first grid, as the square
(quadrilateral in the case of an arbitrary rectangular grid) obtained by joining the centroids of the four
squares adjacent toai (Fig. 3). For the second (dual) grid, the nodes are the midpointsmij of sides such
asai , aj of the original grid. The corresponding oblique dual cellLij is defined by joining the pointsai ,
aj to the centroidsIij andSij of the squares sharing the common sideaiaj .

Let Un
i
∼= U(ai, t

n) andUn+1
ij

∼= U(mij , t
n+1) denote the nodal or cell average values in the first and

second grid at timetn and tn+1, respectively (n even). In the first step, we compute the approximation
Un+1

ij of the problem (1), (46) at the centroid of the oblique cellLij , using a finite volume approach.

First time step

Integrating (1) in the extended cellLij × [tn, tn+1] = [(Lij ∩Ci)∪ (Lij ∩Cj)] × [tn, tn+1], we obtain

tn+1∫
tn

∫∫
Lij

U t dAdt = −
tn+1∫
tn

∫∫
Lij

∇ · F dAdt (48)

or using Gauss’ divergence theorem

∫∫
Lij

U
(
x, y, tn+1)dA =

∫∫
Lij∩Ci

U
(
x, y, tn

)
dA+

∫∫
Lij∩Cj

U
(
x, y, tn

)
dA−

tn+1∫
tn

∫
∂Lij

(f nx + gny)dσ dt,

(49)
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where the left-hand side defines the new cell valueUn+1
ij

A(Lij )U
n+1
Lij

∼=
∫∫
Lij

U
(
x, y, tn+1)dA. (50)

The first two integrals in the right-hand side of (49) can be written as( ∫∫
(Lij∩Ci)S

+
∫∫

(Lij∩Ci)I

)
U
(
x, y, tn

)
dA+

( ∫∫
(Lij∩Cj )S

+
∫ ∫

(Lij∩Cj )I

)
U
(
x, y, tn

)
dA, (51)

where

(Lij ∩Ci)S = triangleaimijSij , (Lij ∩Ci)I = triangleaiIijmij ,

(Lij ∩Cj)S = triangleajSijmij , (Lij ∩Cj)I = triangleajmij Iij .

Instead of splitting the integral onLij into the contributions of four triangles, as above, we can split it
into only two triangles without changing the accuracy of the approximation. The decomposition into four
triangles will be used for the right-hand side of (48).

For a uniform Cartesian grid we have, to second-order accuracy:∫∫
Lij

U
(
x, y, tn

)
dA∼=

{
U

(
xi + �x

3
, yi

)
A(Lij ∩Ci)+ U

(
xj − �x

3
, yj

)
A(Lij ∩Cj)

}
. (52)

To obtain second-order accuracy and preserve monotonicity of the solution, we introduce van Leer’s
(MUSCL) piecewise linear interpolant, defined at a nodeai (in analogy with (23), (25)) by

Ũ i

(
x, y, tn

)= Un
i + U lim, n

i, x

(x − xi)

�x
+ U lim, n

i, y

(y − yi)

�y
. (53)

Combining (52) and (53) now gives∫
Lij

U
(
x, y, tn

)
dA

∼= Un
i A(Lij ∩Ci)+ Un

jA(Lij ∩Cj)+ 1
3U

lim, n
i, x A(Lij ∩Ci)− 1

3U
lim, n
j, x A(Lij ∩Cj). (54)

In the flux integral, the integration with respect to time can be approximated, to second-order accuracy,
by the midpoint rule; the right-hand side of (48) is thus approximated by

�t

∫
∂Lij

(
f
(
U
(
x, y, tn+1/2))nx + g

(
U
(
x, y, tn+1/2))ny)dσ (55)

which requires a prediction at the intermediate timetn+1/2, both for U and for the fluxes, at the cell
interfaces; for example, we need a prediction at the midpointa−

ij of line segmentaiIij (Fig. 3) to
comply with the AV formulation [7–9]; this had not been applied in [5], where we had used a MUSCL
reconstruction of the fluxes combined with an evaluation, at timetn+1/2, performed directly at the
vertices. We feel it is the extension of this procedure which is, in 3 dimensions, responsible (at least in
part) for the loss of accuracy mentioned in the introduction, even though all steps of the approximations
are in fact time-and-space second-order accurate.
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We will use the following prediction ata−
ij , considered as the value along line segmentaiIij :

U
n+1/2
aiIij

= Ũ i

(
a−
ij , t

n
)+ �t

2
U t

(
a−
ij , t

n
)
. (56)

In view of (1), we get

U
n+1/2
aiIij

= Ũ i

(
a−
ij , t

n
)− �t

2

(
A
(
Ũ i

(
a−
ij , t

n
))

U lim
i, x +B

(
Ũ i

(
a−
ij , t

n
))

U lim
i,y

)
. (57)

We notef (U
n+1/2
aiIij

) the corresponding predicted flux computed at the midpointa−
ij of aiIij , at timetn+1/2,

with the help of (57). For a uniform square grid, the quadrilateral cellLij is in fact a square rotated
by 45 degrees. The unit vectors normal to the boundary ofLij (Fig. 3) are

n1 = −
√

2

2
(1,1), n2 =

√
2

2
(1,−1), n3 =

√
2

2
(1,1), n4 =

√
2

2
(−1,1). (58)

By (55), the right-hand side of (48) is thus approximated as follows:

tn+1∫
tn

∫
∂Lij

(fnx + gny)dσ dt

=
tn+1∫
tn

(
4∑

q=1

∫
∂L

q

ij

(f nx, q + gny,q)dσ

)
dt

= �t

√
2

2

((−f
(
U

n+1/2
aiIij

)− g
(
U

n+1/2
aiIij

))
l(aiIij )+ (f (Un+1/2

aj Iij

)− g
(
U

n+1/2
aj Iij

))
l(aj Iij )

+ (f (Un+1/2
aj Sij

)+ g
(
U

n+1/2
aj Sij

))
l(ajSij )+ (−f

(
U

n+1/2
aiSij

)+ g
(
U

n+1/2
aiSij

))
l(aiSij )

)
.

For the rotated square cellLij , we have

l(aiIij ) = l
(
∂1
ij

)=
√

2

2
h.

The first time step then takes the following form:

Un+1
Lij

A(Lij ) = h2

4

((
Un

i + Un
j

)+ 1
3

(
U lim

i,x − U lim
j,x

))
− 1

2h�t
((−f

(
U

n+1/2
aiIij

)− g
(
U

n+1/2
aiIij

))+ (f (Un+1/2
aj Iij

)− g
(
U

n+1/2
aj Iij

))
+ (f (Un+1/2

aj Sij

)+ g
(
U

n+1/2
aj Sij

))+ (−f
(
U

n+1/2
aiSij

)+ g
(
U

n+1/2
aiSij

)))
(59)

hence

Un+1
Lij

= 1
2

(
U n

i + Un
j

)+ 1
6

(
U lim

i,x − U lim
j,x

)
− �t

h

((−f
(
U

n+1/2
aiIij

)− g
(
U

n+1/2
aiIij

))+ (f (Un+1/2
aj Iij

)− g
(
U

n+1/2
aj Iij

))
+ (f (Un+1/2

aj Sij

)+ g
(
U

n+1/2
aj Sij

))+ (−f
(
U

n+1/2
aiSij

)+ g
(
U

n+1/2
aiSij

)))
. (60)
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For a dual grid cellLik such thataiak is parallel to they axis, some minor changes are necessary and we
obtain

Un+1
Lik

= 1
2

(
U n

i + Un
k

)+ 1
6

(
U lim

i,x − U lim
k,x

)
− �t

h

((
f
(
U

n+1/2
akIij

)+ g
(
U

n+1/2
akIij

))+ (−f
(
U

n+1/2
akIij

)+ g
(
U

n+1/2
akIij

))
+ (−f

(
U

n+1/2
aiSij

)− g
(
U

n+1/2
aiSij

))+ (−f
(
U

n+1/2
aiSij

)− g
(
U

n+1/2
aiSij

)))
. (61)

2.1. Second time step

For the second (and further even) time step, we consider the original cellCi (Fig. 3) and the time
interval tn+1 → tn+2 (n even). Proceeding as for the first step, we obtain

Un+2
Ci

A(Ci) =
∫∫
Ci

U
(
x, y, tn+2)dA

∼=
∫∫
Ci

U
(
x, y, tn+1)dA−�t

∫
∂Ci

(
f
(
x, y, tn+3/2)νx + g

(
x, y, tn+3/2)νy)dσ. (62)

The first integral in the right-hand side can be decomposed into 8 parts, and obvious symmetries in the
case of a uniform square grid reduce this to 4 parts:∫∫

Ci

U
(
x, y, tn+1)dA = h2

4

((
Un+1

c − 1

6
U lim, n+1

c,x

)
+
(

Un+1
d − 1

6
U lim, n+1

d,y

)

+
(

Un+1
a + 1

6
U lim, n+1

a,x

)
+
(

Un+1
b + 1

6
U lim, n+1

b,y

))
. (63)

The flux integral is treated as above, using the unit normal vectors

νa = (−1,0), νb = (0,−1), νc = (1,0), νd = (0,1)

we obtain∫
∂Ci

(f νx + gνy)dσ ∼= �t

2

(
f
(
Un+3/2

c−1/2

)+ f
(
Un+3/2

c1/2

)− f
(
Un+3/2

a1/2

)− f
(
Un+3/2

a−1/2

)
+ g

(
U

n+3/2
d1/2

)+ g
(
U

n+3/2
d−1/2

)− g
(
U

n+3/2
b−1/2

)+ g
(
U

n+3/2
b1/2

))
.

The second step of the scheme can therefore be written as

Un+2
Ci

A(Ci) = h2

4

(
Un+1

a + Un+1
b + Un+1

c + Un+1
d

)
+ h2

24

(
U lim, n+1

b,y − U lim, n+1
d,y + U lim, n+1

a,x − U lim, n+1
c,x

)
− �th

2

(
f
(
U n+3/2

c−1/2

)+ f
(
Un+3/2

c1/2

)− f
(
Un+3/2

a1/2

)− f
(
Un+3/2

a−1/2

)
+ g

(
U

n+3/2
d1/2

)+ g
(
U

n+3/2
d−1/2

)− g
(
U

n+3/2
b−1/2

)+ g
(
U

n+3/2
b1/2

))
. (64)
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3. Numerical experiments

Numerical experiments for the methods presented in Sections 1 and 2 will be described in the next two
subsections.

3.1. Three-dimensional ASV formulation (non-oblique dual cells)

3.1.1. Linear advection
We consider the scalar advection equation

ut + aux + buy + cuz = 0

with initial condition u(x, y, z,0) = u0(x, y, z) ≡ f test
0 where(a, b, c) will be chosen equal to(1,1,1)

here. We consider the cases of a discontinuous and of a continuous initial function:

f test 1
0 (x, y, z) =

{
0.5 if (x, y, z) ∈ [ 7

20,
12
20

]3
,

0 else,

f test 2
0 (x, y, z) = cos(2πx)cos(2πy)cos(2πz).

The spatial computational domain for both tests is the cube[0,1] × [0,1] × [0,1]. In Table 1,
L1 denotes the error calculated with theL1 norm, andN is the number of intervals in each spatial
direction. In Tables 1 and 2, SVA/VL means that the simplified van Albada limiter was used for the
prediction and the van Leer limiter for the reconstruction, with similar signification for SVA/MM,
SVA/SB (i.e., predictor/reconstruction).

Table 1 shows the results for the discontinuous initial function; we note that in three dimensions, the
limiters which are smoother give better accuracy, as has generally been observed in the literature [17,34].

Table 1
L1-error and accuracy order, discontinuous problem (test 1) 3D case

Limiters L1, N = 16 L1, N = 32 L1, N = 64 OL1

OVATa (K = 3) 0.010696 0.006992 0.003764 0.75

VLb 0.006030 0.004317 0.002083 0.77

MMc 0.014622 0.011124 0.007142 0.52

SBd 0.014158 0.010627 0.006385 0.57

SVAe/VL 0.009184 0.007319 0.003732 0.65

SVA/MM 0.011052 0.011415 0.007090 0.21

SVA/SB 0.010967 0.011116 0.006692 0.36

aOriginal van Albada with Threshold.
b Van Leer.
c MinMod.
d Superbee.
eSimplified van Albada.



384 P. Arminjon et al. / Applied Numerical Mathematics 40 (2002) 367–390

Table 2
L1 error and accuracy order, continuous problem (test 2), 3D case

Limiter L1, N = 16 L1, N = 32 L1, N = 64 OL1

SVA 0.032720 0.009580 0.002794 1.77

SVA/VL 0.023744 0.006406 0.001813 1.86

SVA/MM 0.047324 0.011864 0.003920 1.80

SVA/SB 0.021896 0.009090 0.002803 1.48

Table 3
Continuous problem (test 2) original van Albada limiter, 3D case

N L1 (K = 0) OL1 L1 (K = 0.75) OL1 L1 (K = 1.5) OL1

8 0.095168 0.032114 0.029454

16 0.032720 1.54 0.009070 1.82 0.007669 1.94

32 0.009580 1.77 0.002444 1.89 0.001876 2.03

Fig. 4.L1 error Original van Albada limiter withK ∈ [0.25,2.25].

These results give some insight into the difficulties encountered in 3-dimensional calculations. We
observe that the second grid refinement is much more efficient than the first; the orderOL1 indicated
in the last column is the average of the two orders obtained from each grid refinement.
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Tables 2 and 3 present a test with a continuous initial function. We see that with the smoother simplified
van Albada and van Leer limiters, second-order accuracy is approached while it is even slightly exceeded
with the original van Albada limiter.

Fig. 4 shows the effect of varying the parameterK in ε2 = (K�x)3. For small values ofK (say less
than 3) the order increases withK , but we found that monotonicity is no longer preserved ifK grows
beyond a particular value which depends on the smoothness of the initial function; smoother data allow
higher values ofK before encountering monotonicity breaches.

3.1.2. Three-dimensional Euler equations
We considered the classical test problem [35] of supersonic flow in a channel with a forward

facing step, extended here to a three-dimensional geometry corresponding to the computational domain
[0,3] × [0,1] × [0,1] (in dimensionless units). The length, width and height of the step are 2.4, 1 and
0.2, respectively.

(a)

(b)

Fig. 5. Densityt = 3.05, 61 contours, grid 240× 10× 80; (a) Simplified van Albada and (b) OVAT5 with K = 3.
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Fig. 5(a) shows the results obtained (in the unstationary mode) with the simplified van Albada limiter,
at timet = 3.05. Although the density contours are smooth, the forward shock is not very sharp and the
reflected ones even weaker.

Fig. 5(b) presents the results obtained with the original van Albada limiter, withK = 3. The forward
and reflected shocks are somewhat sharper, but we are still far from the sharp structure observed, e.g.,
in [5,35]. This is not only the consequence of some difficulties which might have been encountered
by our method, but can also be attributed, at least in part, to the fact that we are dealing with three-
dimensional shocks. Our results here compare favorably, though, with similar results presented, for
the second-order upwind scheme and unstructured tetrahedra obtained from an original structured
cubic grid, where the cubes are decomposed into tetrahedra, in [11]. We believe that mesh adaptation,
which, unfortunately, was not available when our numerical experiments were performed, would lead to
significant improvements, in the 3-dimensional case, as was observed in [1] in the 2D case, and intend to
study this aspect of our 3D computations in the future.

3.2. New 2D ASCV formulation (oblique dual cells)

We considered initial values problems for the advection equation

ut + aux + buy = 0, 0� x, y � 1,

where we chosea = b = 1 here, with the initial functions

f test 1
0 (x, y) =

{
0.5 if

(
x − 1

2

)2 + (y − 1
2

)2
< 1

8,

0 elsewhere,

and

f test 2
0 (x, y) = sin

(
π(x + y)

)
.

Table 4 shows the results obtained, for the discontinuous initial function, with the new “oblique dual
cell” ASCV finite volume method, using the simplified van Albada limiter (SVA).N is the number
of intervals in each spatial direction, andNt is the number of double time steps. On the right, for
comparison’s sake, we have given the results obtained with the former ASV method (with cell boundaries
parallel to thex or y axes), using van Leer’s limiter (VL).

For this discontinuous problem, both methods seem to be comparable. The slight advantage provided
by the ASV method could be due to the reconstruction of the fluxes and the fact that van Leer’s limiter
might, in some cases, lead to better results than the simplified van Albada limiter, as already observed
for our 3-dimensional tests (Tables 1 and 2).

Table 4
Test 1, new 2D scheme ASCV (left) old scheme ASV (right)

N Nt SVA van Leer

Errors: L1 L∞ L1 L∞

85 30 1.149E−2 2.615E−1 5.835E−3 2.929E−1

5 OVAT: Original van Albada with Threshold.
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Table 5
Test 2, new 2D scheme ASCV

ASCV

N L1 L∞ OL1 OL∞

40 2.352E−2 6.003E−2

80 5.759E−3 2.303E−2 2.03 1.38

160 1.347E−3 8.759E−3 2.10 1.39

Table 6
Test 2, 2D NT

Jiang–Tadmor [18]

N L1 L∞ OL1 OL∞

40 1.93E−2 4.91E−2

80 5.70E−3 2.12E−2 1.76 1.21

160 1.55E−3 8.90E−3 1.88 1.25

For the second (continuous) test function, we have compared the new oblique dual cell method
(Table 5) with the results obtained by Jiang and Tadmor [18] for the same test (Table 6) with a 2-di-
mensional extension of the Nessyahu–Tadmor scheme similar to the ASV extension but without
reconstruction of the fluxes.

The new ASCV method leads to betterL1 andL∞ errors with the final grid, and to higher orders
of accuracy. We note that we have performed 400 double time steps, while the number of time steps
performed in [18] is not indicated.

4. Concluding remarks

We have presented new 2- and 3-dimensional non-oscillatory central finite volume methods for
staggered grids. Starting from our two-dimensional finite volume generalization for Cartesian grids of the
Nessyahu–Tadmor 1-dimensional finite difference scheme, we have extended it to a 3-dimensional finite
volume method using two staggered Cartesian grids at alternate time steps. Our numerical experiments
have shown that for continuous initial data, the method is non-oscillatory and second-order accurate when
coupled with the original van Albada limiter; slight under/overshoots, for discontinuous data, can arise
for inadequate choices of the limiter parameterK . Mesh adaptation would probably bring substantial
improvements, and will be studied.

Having observed these under/overshoots when using the original van Albada limiter, and orders of
accuracy inferior to the theoretical second-order predicted, in the absence of discontinuities, by the
principle of the method when using the simplified van Albada limiter, and in an effort to simplify
the computational complexity of our earlier 2-dimensional method, where the reconstruction step was
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applied both to the dependent variables and to the fluxes, we have investigated here the possibility of
a direct transposition of our 2-dimensional finite volume method for staggered unstructured triangular
grids to the case of 2-dimensional Cartesian grids. This new “oblique dual cell” (or “diamond” dual cell)
method (ASCV) seems to converge faster in all norms than the Jiang–Tadmor 2-dimensional extension
of the NT scheme, while having comparable accuracy; on the other hand, its accuracy is comparable with
the earlier 2-dimensional version (ASV) (non-oblique dual cells), but computing times are reduced since
we do not reconstruct the fluxes; the 2-dimensional ASCV method can therefore be considered as a slight
improvement of both earlier methods (ASV and JT).

These considerations have encouraged us to proceed to three-dimensional computations on unstruc-
tured tetrahedral grids, using grid adaptation [4].
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Appendix A

Using Eq. (11) and the reconstruction (23), the complete ASV second-order scheme in 3D can be
written as:

First time step.
(i) Reconstruction of conservative variables:

MUn

Clmn
(Rijk) = Un

Clmn
+ 1

2∇Un
Clmn

· (Rijk − RClmn). (A.1)

Rijk represents the center of cellLijk andRClmn the center of cellClmn.
(ii) Predictor:

U
n+1/2
ijk = Un

ijk − �t

2

(
A · U lim, n

ijk,x +B · U lim, n
ijk,y +C · U lim, n

ijk,z

)
. (A.2)

(iii) Reconstruction of the flux:

F
n+1/2
ijk = F

(
U

n+1/2
ijk

)
, MF n+1/2

Clmn
(R∂L

q

ijk
) = F

n+1/2
Clmn

+ ∇F
n+1/2
Clmn

· (R∂L
q

ijk
− RClmn), (A.3)

R∂L
q

ijk
is the center of faceq of theLijk cell.

Using the facts that�x = �y = �z = h and V (Clmn ∩ Lijk)/V (Lijk) = 1
8 and A(Clmn ∩

∂L
q
ijk)/V (Lijk)= 1/(4h), Eq. (11) can be re-written as
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(iv) Corrector:

Un+1
Lijk

= 1

8

∑
lmn

neighbor

MUn

Clmn
(Rijk)− �t

4h

6∑
q=1

∑
lmn

neighbor

MF n+1/2

Clmn
(R∂L

q

ijk
) · nq. (A.4)

Second time step.
Repeat steps (i)–(iv) starting from the values on the staggered gridLijk.
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